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Four Laws of Thermodynamics vs
Four Laws of Black Hole mechanics

There is a remarkable analogy between the laws of thermodynamics and the
laws of black hole mechanics

Thermodynamics

0. E, T, S, V, P, ...

1. dE = TdS − PdV

2. δS ≥ 0

3. S → 0 if T → 0

Black Hole mechanics
(Bardeen, Carter, Hawking,73’; Bekenstein 73’)

0. surface gravity κ = 1
M

, Q, a, ...

1. dM = 1
8πM

d A
4
+ ...

2. δA ≥ 0

3. States with κ = 0 are unattainable

A missing link in this area is a precise statistical mechanical interpretation
of entropies for all varieties of black holes.
We can try to find a statistical mechanics model with the same dependence
of entropy on other thermodynamic variables as a particular black hole has
However, there is a problem with the third law of thermodynamics
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Third Law of Thermodynamics

In the Planck formulation : Entropy S → 0 as T → 0 (β = 1
T → ∞)

In the Nernst formulation

δS(T, x) ≡ S(T, x)− S(T, x′) → 0 as T → 0 (1)

or
lim
T→0

S(T, x)− universal constant

Unattainability of T = 0

REFS: W.Israel, 1986; R.Wald, 1997;
F. Belgiorno and M. Martellini, 2004;
C. Kehle and R. Unger, 2211.1574.
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Violation of Third Law in BH Thermodynamics

Schwarzschild black hole
Hawking temperature T = 1

8πM

Bekenstein-Hawking entropy S = 1
16πT2 → ∞ as T → 0

Violation in Planck formulation

Reissner-Nordstrom black hole
Hawking temperature T =

√
M2−Q2

2π
(√

M2−Q2+M
)2 → 0 for M → Q or M → ∞

BH entropy S = π
(√

M2 −Q2 +M
)2

→ πQ2 for T → 0 depends on Q

Kerr
Violation in Nernst formulation
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Violation of Third Law in BH Thermodynamics
Few more examples

dS
Hawking temperature T = 1

2πℓ
,

Bekenstein-Hawking entropy

S = 1
4
ℓ2 ΩD−2 = 1

16π2T2 ΩD−2 → ∞ as T → 0

SAdS (in global coord.)

RNAdS (in global and Poincare coords.)
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BHs without Violation of Third Law

SAdS in Poincare coords ds2 = r2

L2 (−fdt2 + dx⃗2) + L2

r2

dr2

f
, f = 1− rd+1

h

rd+1

Hawking temperature T =
(d+ 1)rh

4πL2

Bekenstein-Hawking entropy (density) S = 1
4G

rdh
rd

→ 0 as T → 0

Deformed PAdS with BHs
Example. Spacetime with topology AdS2 × S8 Horowitz, Strominger 91

ds2 = c ρ9/20
[
4

25

(
−ρ2hdτ2 +

dρ2

ρ2h

)
+ dΩ2

8

]
h = 1−

(
ρ0
ρ

) 14
5

, T ∼ ρ0 (2)

S ∼ T 9/5 (3)
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Physical systems with violation of the Third Law

Lattice models.
The question of whether the third law is satisfied can be decided completely
in terms of ground-state degeneracies
M. Aizenman, El. Lieb 80’

Ice models.
V. F. Petrenko and R. W. Whitworth, 99’, Physics of Ice

Strange metals.
J. Zaanen et al. 15’, Holographic duality in condensed matter physics.
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Few Refs. on microscopic origin of BH entropy
The problem of the microscopic origin of the Bekenstein-Hawking entropy of
a black hole has attracted a lot of attention over the past 30 years.

Wheeler considered of the BH interior as ”bag of gold” (Almheiri et al 20)

Strominger and Vafa, 96’ ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
3,

f(r) =
(
1− ( r0

r
)2
)2
, r0 = (

8QHQ2
F

π2 )1/6, SBH = 2π

√
QHQ2

F
2

D-0 branes interpretation: d(n, c) ∼ exp(2π
√

nc
6
), c = 6( 1

2
Q2

F + 1), n = QH

Sstat = ln d(QF , QH) ∼ 2π

√
QH(

1

2
Q2

F + 1)

’t Hooft 84’ proposed to relate BH entropy with the entropy of thermally
excited quantum fields in the vicinity of the horizon.

Recent searches Balasubramanian et al 22’ for internal geometries that
provide the entropy of BH.

Matrix models corresponding to BH in spacetime with topology AdS2 × S8,
Maldacena’23
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To summarize Introduction

Schwarzschild BHs violate 3-d law of thermodynamics.

Schwarzschild BH entropies in D-dim S → ∞ rather than zero
when T → 0.

We search for quantum statistical models with such exotic
thermodynamic behaviour.
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Free energy of non-local Bose gas (NLBG).

d-dim non-local Bose gas (standard case α = 2)

FBG(d, α) =
Ωd−1

β

∫ ∞

0

ln
(
1− e−λβ kα

)
kd−1dk.

Explicit form

FBG(d, α) = − 2πd/2

dΓ(d/2)

(
1

β

) d
α+1 (

1

λ

) d
α

Γ

(
d

α
+ 1

)
ζ

(
d

α
+ 1

)
.

Free energy of of D-dim Sch.BH FBH(D,β)

FBH(D,β) = FBG(d, β)
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Reminder: Euler Gamma function

Γ(s) =

∫ ∞

0

e−x xs−1 dx, ℜs > 1 (4)

Γ(n) = (n− 1)! (5)

Γ(s) is a meromorphic function in C with simple poles at s = 0,−1,−2, ...

Γ(s) ̸= 0 if s ∈ C
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Reminder: Riemann Zeta function

ζ(s) =

∞∑
n=1

1

ns
=

1

Γ(s)

∫ ∞

0

xs−1dx

ex − 1
, ℜs > 1 (6)

ζ(s) is a meromorphic function in C with simple a pole at s = 1

Zeros of ζ(s)

"trivial zeros": s = −2,−4, ...

"non-trivial zeros"in the strip 0 < ℜs < 1

Riemann hypothesis: All non-trival zeros lie on line ℜs = 1
2

(Hardy theorem)
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Reminder: Functional Relations

Γ (s) Γ (1− s) =
π

sin(πs)

Γ(s) ζ(s) =
πs ζ(1− s)

21−s sin(π(1−s)
2 )

,
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D=4 Schwarzschild BH vs Bose Gas. 1/3

Schwarzschild solution

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2,

Hawking temperature and Bekenstein-Hawking entropy

T =
1

8πM
, S = 4πM2 =

β2

16π

Free energy

F =
β

16π
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D=4 Schwarzschild BH vs Bose Gas. 2/3

Equalizing: FBG(β) = FBH(β)

− πd/2

β
d
2+1λ

d
2

ζ

(
d

2
+ 1

)
=

β

16π
(∗)

To fulfill (*) we have to assume

d = − 4, λ2 = − π

16 ζ(−1)
.

Taking into account that ζ(−1) = −1/12, we get

λ =

√
3π

4
,
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D=4 Schwarzschild BH vs Bose Gas. 3/3

Therefore, we obtain that the thermodynamics of the 4-dim Schwarzschild
BH is equivalent to the thermodynamics of the Bose gas in d = − 4 spatial
dimensions.

We understand the thermodynamics of the Bose gas in negative spatial
dimensions in the sense of the analytical continuation of the right hand site
of

FBG = − πd/2

β
d
2+1λ

d
2

ζ

(
d

2
+ 1

)
.

I. Aref’eva Non-local Bose Gas as Microscopic origin of Schwarzschild black hole entropy QG&C’23 16 / 28



D>4 Schwarzschild BH vs Bose Gas

D-dimensional Schwarzschild black hole, D ≥ 4,

ds2 = −
(
1− rh

D−3

rD−3

)
dt2 +

dr2

1− rhD−3

rD−3

+ r2dω2
D−2,

Hawking temperature T = 1/β = D−3
4πrh

rh is the radius of the horizon.
The entropy and the free energy are

S =
ΩD−2

4

(
D − 3

4π

1

T

)D−2

; F =
(D − 3)D−3βD−3 ΩD−2

4(4π)D−2

S → ∞, when T → 0 — a violation of the 3-d law
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D>4 Schwarzschild BH vs Bose Gas.

Equalizing: FBG(β) = FBH(β) we get

− πd/2

Γ(d/2 + 1)

(
1

β

) d
α+1 (

1

λ

) d
α

Γ

(
d

α
+ 1

)
ζ

(
d

α
+ 1

)

=
(D − 3)D−3

4(4π)D−2
βD−3 2π

D−1
2

Γ(D−1
2 )

powers of β: d = − (D − 2)α,

FBG = − π− (D−2)α
2

Γ(1− (D−2)α
2 )

βD−1 λD−2Γ (3−D) ζ (3−D) .
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D>4 Schwarzschild BH vs Bose Gas.
Necessary & sufficient conditions

Since FBH > 0, using the functional relations

i) Γ(3−D) ζ(3−D) =
ζ(D − 2)

2D−2πD−3 sin(π(D−2)
2 )

ii) Γ

(
(D − 2)α

2

)
Γ

(
1− (D − 2)α

2

)
=

π

sin(π (D−2)α
2 )

we obtain necessary & sufficient conditions for the existence of λ,
0 < λ < ∞, solving FBG = FBH

0 < −
sin(π(D−2)

2 )

Γ( (D−2)α
2 ) sin(π (D−2)α

2 )
< ∞ (∗∗)
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D>4 Schwarzschild BH vs Bose Gas.
Solutions to inequalities (**)

0 < −
sin(π(D−2)

2 )

Γ( (D−2)α
2 ) sin(π (D−2)α

2 )
< ∞ (∗∗)

Since D is a natural number, sin(π(D−2)
2 ) takes three values:

sin(
π(D − 2)

2
) =

 1 for D = 4k + 3, k = 1, 2, 3, ...
0 for D = 2k, k = 2, 3, 4, ...
−1 for D = 4k + 1, k = 1, 2, 3, ...

. (7)
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D>4 Schwarzschild BH vs Bose Gas.
First series, D = 2k

0 < −
sin(π(D−2)

2 )

Γ( (D−2)α
2 ) sin(π (D−2)α

2 )
< ∞ (∗∗)

For D = 2k — the zeros of the sines must be compensated: α = p
k−1 ,

p = 1, 2, ...

Regularization D = 2k + ϵ,

K[k, p, ϵ] ≡ −
sin(π(D−2)

2 )

sin(π (D−2)α
2 )

∣∣∣
D=2k+ϵ,α= p

k−1

, lim
ϵ→0

K[k, p, ϵ] =
(−1)k(k − 1)

2p

k = 2, 3, 4, ...

I. Aref’eva Non-local Bose Gas as Microscopic origin of Schwarzschild black hole entropy QG&C’23 21 / 28



D>4 Schwarzschild BH vs Bose Gas.
4 series of solutions

4 series of solutions

D d α
D = 4k + 1, k = 1, 2, 3... d = (4k − 1)|α| α = −q, q = 1, 2, 3

D = 4k + 1, k = 1, 2, 3... d = −(4k − 1)α 4r
4k−1

< α <
2(2r+1)
4k−1

, r = 0, 1, 2, ...

D = 4k + 3, k = 1, 2, 3... d = −(4k + 1)α
2(2r+1)
4k+1

< α <
4(r+1)
4k+1

, r = 0, 1, 2...

D = 2k, k = 2, 3, 4... d = −2(k − 1)α α = p
k−1

, p = 1, 2, ..

Euclid d = 3
Kaluza-Klein d = 5
Superstrings d = 10
Here d < 0
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De Sitter and Bose Gas

ds2 = −
(
1− r2

ℓ2

)
dt2 +

(
1− r2

ℓ2

)−1

dr2 + r2dω2
D−2,

T =
1

2πℓ
, S =

1

16π2T 2
ΩD−2, F =

β

16π
ΩD−2, D ≥ 3

FdS = FBG gives
α = 2k, d = − 4k,

λ2 =
1

(2k)!

3π
D−3

2 +2k

Γ(D−1
2 )

, k = 1, 2, 3, ... D = 4, 5, ...
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RN Extremal BH

D=4, We know that entropy for ERN at zero temperature

S = πQ2 (8)

For Bose gas

FBG = − 2πd/2

(2π)d dΓ(d/2)

(
1

β

) d
α+1 (

1

λ

) d
α

Γ

(
d

α
+ 1

)
ζ

(
d

α
+ 1

)
. (9)

and entropy

EBG = β2 ∂FBG

∂β
= (

d

α
+ 1)β− d

α
πd/2

Γ(d/2 + 1)

(
1

λ

) d
α

Γ

(
d

α
+ 1

)
ζ

(
d

α
+ 1

)
(10)

We take α = ∞ and we get

πQ2 =
πd/2

Γ(d/2 + 1)
Γ (1) ζ (1) (11)
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Extremal RNBH. D=4
Let us denote d/2 + 1 ≡ −n, n = 0, 1, 2, and we left with

πQ2

πn+1
=

ζ(1)

Γ(−n)
(#)

We understand the RHS of (#) as limϵ→0
ζ(1+ϵ)

Γ(−n+ϵ) = (−1)n 1
n! ⇒ n = 2k

Q2 ≡ M2 =
π2k

(2k)!
, k = 1, 2, 3

In the usual unit and correct multiple (2π)d = (2π)−2(n−1)

M2 = K(k)M2
pl, K(k) =

π2k(2π)2(2k−1)

(2k)!
, k = 1, 2, 3 (12)

We get quantization of the mass of the BH!

Using the Stirling formula n! ∼
√
2πn

(
n
e

)n
we get M2 ≈ 1

8π5/2
√
k

(
2eπ3

k

)2k

M2
pl

2eπ3 ≈ 168 50 100 150 200 k

-50

50

100

Log[K]

I. Aref’eva Non-local Bose Gas as Microscopic origin of Schwarzschild black hole entropy QG&C’23 25 / 28



Extremal RNBHs. D>4
For the extremal case we have T = 0 and entropy

Sext =
1

4
ΩD−2M

D−2
D−3 , ΩD−2 =

2π(D−1)/2

Γ((D − 1)/2)

SBG = SBG

1

4

2π(D−1)/2

Γ((D − 1)/2)
M

D−2
D−3 = (

d

α
+ 1)β− d

α
πd/2

Γ(d/2 + 1)

(
1

λ

) d
α

Γ

(
d

α
+ 1

)
ζ

(
d

α
+ 1

)
We take α = ∞ and get

1

4

2π(D−1)/2

Γ((D − 1)/2)
M

D−2
D−3 =

πd/2

Γ(d/2 + 1)
Γ (1) ζ (1) (13)

Let us denote d/2 + 1 ≡ −n, n = 0, 1, 2, and we left with

1

4πn+1

2π(D−1)/2

Γ((D − 1)/2)
M

D−2
D−3 = (−1)n

1

n!
⇒ n = 2k (14)
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RN Extremal BHs. D>4

In the usual unit and correct multiple (2π)d = (2π)−2(n−1)

(the same as it was for D=4)(
M

Mpl

)D−2
D−3

= K(D, k),

K(D, k) = Γ(
D − 1

2
)
4π2k+1(2π)2(2k−1)

2π(D−1)/2(2k)!

k = 1, 2, 3, ...

Very weak dependence on D

NLBG with α = ∞, d = −2(2k + 1) recovers
the entropy of extremal RNBH at zero T .
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Conclusion

The model of Bose gas in negative dimension recovers the temperature
dependence of entropy of the D=4 Schwarzschild black hole

We use the Riemann zeta function analytical continuation to define the
entropy of the Bose gas in negative dimension.

D > 4, in particular, for D = 4k + 1, d = (4k − 1)q, α = −q; k, q = 1, 2, 3, ...

Bose gas with α = 2k in negative dimension d = − 4k recovers the
temperature dependence of entropy of the dS spacetime (D -arbitrary).

Quantization of the mass of the extremal RN BH.
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