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e Introduction
e Third Law of Thermodynamics and its violation by BHs

e Microscopic origin of the Bekenstein-Hawking entropy — previous
considerations

@ Microscopic origin of the Bekenstein-Hawking entropy via non-local gas
models

e entropy of non-local gas models with the (-function regularization

o Examples

e Conclusion
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Four Laws of Thermodynamics vs
Four Laws of Black Hole mechanics

@ There is a remarkable analogy between the laws of thermodynamics and the
laws of black hole mechanics

Black Hole mechanics
Thermodynamics (Bardeen, Carter, Hawking,73’; Bekenstein 73’)

® 0. E,T,S,V,P, ...
@ 1.dE =TdS — PdV : i

o 2. >
@ 3.5S—-0ifT—0 8420
@ 3. States with k = 0 are unattainable

@ 0. surface gravity kK = ﬁ , Q,a,...

e A missing link in this area is a precise statistical mechanical interpretation
of entropies for all varieties of black holes.

@ We can try to find a statistical mechanics model with the same dependence
of entropy on other thermodynamic variables as a particular black hole has

e However, there is a problem with the third law of thermodynamics
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Third Law of Thermodynamics

e In the Planck formulation : Entropy S — 0 as 7 — 0 (8 = 7 — 00)

e In the Nernst formulation

5S(T,z) = S(T,z) — S(T,2') -0 as T —0 (1)

or

lim S(T,x) — universal constant
T50

e Unattainability of T'= 0

REFS: W.Israel, 1986; R.Wald, 1997;
F. Belgiorno and M. Martellini, 2004;
C. Kehle and R. Unger, 2211.1574.
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I. Aref’eva

Violation of Third Law in BH Thermodynamics

@ Schwarzschild black hole

o Hawking temperature T = -1

8Tt M

o Bekenstein-Hawking entropy S = 16“% —o00 as T —0

Violation in Planck formulation

@ Reissner-Nordstrom black hole

o Hawking temperature T' = ———F———= VMLQzQ —0for M - Qor M — o0
2«( M27Q2+M)

2
e BH entropy S == (\/M2 — Q? +M) — 7Q? for T — 0 depends on Q
o Kerr

Violation in Nernst formulation
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Violation of Third Law in BH Thermodynamics
Few more examples

e dS

o Hawking temperature 1" = 2—71%,
e Bekenstein-Hawking entropy

S:iﬁQD,g: QAp_o—00 as T —0

1
167272

e SAdS (in global coord.)

e RNAJS (in global and Poincare coords.)
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BHs without Violation of Third Law

. . 2 r2 9 o 2 2 a1
@ SAdS in Poincare coords ds® = 75 (—fdt* + dz*) + sz f=1- 1
d+ 1)r
e Hawking temperature 7' = g
4 L2

d
o Bekenstein-Hawking entropy (density) S = é:—ﬁ -0 as T—0

o Deformed PAdS with BHs
Example. Spacetime with topology AdS, x S8 Horowitz, Strominger 91

4 dp
2 _ 9/20 | = 2 ap— 2
ds cp [25( hdr? + h)—i—dﬂ}
%
ho= 1(pp°> ., T~ po 2)
S ~ T (3)
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Physical systems with violation of the Third Law

o Lattice models.
The question of whether the third law is satisfied can be decided completely
in terms of ground-state degeneracies
M. Aizenman, El. Lieb 80’

o Ice models.
V. F. Petrenko and R. W. Whitworth, 99°, Physics of Ice

e Strange metals.
J. Zaanen et al. 15°, Holographic duality in condensed matter physics.
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Few Refs. on microscopic origin of BH entropy

@ The problem of the microscopic origin of the Bekenstein-Hawking entropy of
a black hole has attracted a lot of attention over the past 30 years.

o Wheeler considered of the BH interior as "bag of gold” (Almbheiri et al 20)

o Strominger and Vafa, 96’ ds*> = —f(r)dt® + f(r) " dr? + r2dQ3,

T 2

D-0 branes interpretation: d(n, c) ~ exp(2m,/%°), ¢ = 6(%@% +1), n=Qnu

Sstat =In d(QF7 QH) ~ QWW)

’t Hooft 84’ proposed to relate BH entropy with the entropy of thermally
excited quantum fields in the vicinity of the horizon.

Fr) = (1= (22)%), ro = (R0 5y — oy Q2

e Recent searches Balasubramanian et al 22’ for internal geometries that

provide the entropy of BH.

o Matrix models corresponding to BH in spacetime with topology AdSs x S®,

I. Aref’eva

Maldacena’23
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To summarize Introduction

e Schwarzschild BHs violate 3-d law of thermodynamics.

e Schwarzschild BH entropies in D-dim S — oo rather than zero
when T — 0.

@ We search for quantum statistical models with such exotic
thermodynamic behaviour.
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Free energy of non-local Bose gas (NLBG).

e d-dim non-local Bose gas (standard case a = 2)

Oy [ .
Fpa(d,a) = dﬁ L (1 Ak ) ki Ldk,
0

e Explicit form

et~ iy ()7 () o2 )e(200).

e Free energy of of D-dim Sch.BH Fpy (D, )

° Fpr(D,B) = Fpal(d,B)
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Reminder: Euler Gamma function

_ [ e 5y s
I‘(s)—/o dz, Rs>1 (4)
I'(n) =(n—1)! (5)

I'(s) is a meromorphic function in C with simple poles at s = 0,—1, -2, ...

I'(s)#0if s C
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Reminder: Riemann Zeta function

=1 1 ® p5~ldx
©=% 5=rm) w1 (6)

¢(s) is a meromorphic function in C with simple a pole at s =1

@ Zeros of ((s)
o "trivial zeros": s = —2,—4, ...
e "non-trivial zeros"in the strip 0 < Rs < 1

o Riemann hypothesis: All non-trival zeros lie on line Rs = 2

2
(Hardy theorem)
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I. Aref’eva

Reminder: Functional Relations

—
—
»
~
—
—~
—
|
w
~
Il

sin(ms)

(1= s)

21-s gin( T2y’
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D=4 Schwarzschild BH vs Bose Gas. 1/3

@ Schwarzschild solution
2M oM\ !
ds? = — <1 - ) dt* + <1 - ) dr?® +r?dQ?,
r r
o Hawking temperature and Bekenstein-Hawking entropy
1 2
T=— S =d4nM? = L

StM’ 167

o Free energy
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D=4 Schwarzschild BH vs Bose Gas. 2/3

e Equalizing: Fpa(8) = Fu(B)

,ﬁd/2 B
52+1A3§< )_167r )

e To fulfill (*) we have to assume

T
d=—14 M=
’ 16¢(-1)
e Taking into account that {(—1) = —1/12, we get
3T
A= —
4 )
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D=4 Schwarzschild BH vs Bose Gas. 3/3

@ Therefore, we obtain that the thermodynamics of the 4-dim Schwarzschild
BH is equivalent to the thermodynamics of the Bose gas in d = — 4 spatial
dimensions.

e We understand the thermodynamics of the Bose gas in negative spatial
dimensions in the sense of the analytical continuation of the right hand site

of
/2 d
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D >4 Schwarzschild BH vs Bose Gas

e D-dimensional Schwarzschild black hole, D > 4,

D-3 dr2
r r
ds® = — (1 — hD_3> dt? + ﬁ‘i‘ T2dw%727
r 1 o
e Hawking temperature T =1/8 = gr;f

rp, is the radius of the horizon.
@ The entropy and the free energy are
Qp_s <D ~-31 >D2 g (D=3)P BP0,
4 47 T ’ 4(4m)P-2

S — 0o, when T'— 0 — a violation of the 3-d law

S =
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D >4 Schwarzschild BH vs Bose Gas.

e Equalizing: Fpa(B) = Fpu(B) we get

e () G) e (En)e()

_ (D - 3)P- BD 3 2m 2
1= T

e powers of 3: d=—-(D-2)a,

(D—2)a
—(D=2)a

FBG:f”(TﬁD LAP=21 (3 - D)( (3 - D).
(1 — (222
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D >4 Schwarzschild BH vs Bose Gas.
Necessary & sufficient conditions

e Since Fpy > 0, using the functional relations

(D -2

— 3 i T(D—=2
2D—27D=3 gin( (2 ))

wor <(D_22)a) g (1 B (D_Qm) - sin(wg’*?)“)

2

i) T(3—D)((3—D) =

e we obtain necessary & sufficient conditions for the existence of A,
0 < A< oo, solving Fgg = Fpy
sin(T2-2))

0<—
1—1( (D;Q)a) Sin(ﬂ' (D;Q)oz)

< 00 (%)
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D>4 Schwarzschild BH vs Bose Gas.
Solutions to inequalities (**)

sin("52)

0<—
F( (D_22)a) Sin(']T (D—22)a )

< 00 ()

e Since D is a natural number, sin(@) takes three values:

1 for D=4k+3, k=1,2,3,..
)= 0 for D=2k, k=23.4,.. . (7)
1 for D=4k+1, k=123

m(D —2)
2

sin(
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D >4 Schwarzschild BH vs Bose Gas.
First series, D = 2k

sin(LDQ_Q))

0<—

< 00 ()

F( (D—22)o¢ ) Sin(ﬂ' (D—22)a )

e For D = 2k — the zeros of the sines must be compensated: a = 25,
p=1,2, ..
Regularization D = 2k + ¢,
. m(D—-2) .
sin(T5—~ (k1
Klk,p,e| = —%2_2)) lim K[k, p, e] = DMk —1)
Sin(w(To‘) D=2k+ec,a=7Lr" 0 2%

k=234,..
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D >4 Schwarzschild BH vs Bose Gas.

@ 4 series of solutions

4 series of solutions

D d a
D=4k+1, k=1,2,3... | d=(4k —1)|q] a=-q,q=1,2,3
D=4k+1, k=1,2,3... | d=—(4k — 1)a o ca< 22D 01,2,

2(2r+1 a(rF1
D=4k+3, k=123.|d=—(dk+1)a | 2000 ca<THL =0,1,2..
D = 2k, k=2,3,4.. d=-2(k—-1)x a:k'%l, p=12,..
@ FEuclid d =3

Kaluza-Klein d = 5

Superstrings d = 10

Here d < 0
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De Sitter and Bose Gas

-1
ds® = — 1—ﬁ dt® + 1—ﬁ dr? 4 r2dw?
02 02 D—2>

1 1 3
= — = — e >
T=5m 7 oo o2 P =g 2 D23

o Fys = Fpg gives
a =2k, d=—4k,

1 3ra 42k

G ye=y

 k=1,2,3,...D=4,5,...
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RN Extremal BH
D=4, We know that entropy for ERN at zero temperature
S = 71Q? (8)

For Bose gas

e OMONCNCIO

and entropy

2 0Fpg  ,d _a @ 1
Epc =28 EY; —(54-1)5 F(d/Q—&—I)()\)

We take o = co and we get

WQQ = mr (1)4(1) (11)
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Extremal RNBH. D—4

Let us denote d/2+1=—-n, n=0,1,2, and we left with
Q> (1)
= (#)

antl  T(—n)

We understand the RHS of (#) s lime o (7 = (—1)" % = n = 2k

) , w2
=M2="_ k=123
@ (2k)!
In the usual unit and correct multiple (27)? = (27)~2(*~1)
‘ 2k (277)2(2k=1)
M2 =K(k)M%, Kh)y="—"" k=1,2,3 12
( ) pl>s ( ) (2/{,')' ’ ) &y ( )
We get quantization of the mass of the BH!
n Log[K]
Using the Stirling formula n! ~ v/2mn (%)
3 2]() ‘ 100
we get M? ~ — 7 (2613 ) M2 ®
2671'3 ~ 168 50 100 150 K

=50
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Extremal RNBHs. D>4

For the extremal case we have T'= 0 and entropy

Ser = 20p LMBE, 0 2n (P77
= — D-3 = —
ext 4 D—-2 ’ D—-2 F((D — 1)/2)
Spa = SBa
1 22:0-1/2 L, g . w2 1\* _/d d
- _MPa=(—41)pf " (~] T(=+1 —+1
i = G e (3) T (R ) ()
We take o = 0o and get
1 2x(P-D/2 D> 7d/2
- _MDPs=———_T(1)¢(1 13
it T tapsn MW (13)
Let us denote d/2+1=—n, n=0,1,2, and we left with
1 2x(P-D/2 - 1
l 55 = (=1)"—=n =2k (14)

4 L T((D — 1)/2) nl
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RN Extremal BHs. D>4

In the usual unit and correct multiple (27)? = (27)~2(*—1)

(the same as it was for D=4)

D—-1 47T2k+1(2ﬂ.)2(2k71)
2 ) 2r0-D/2(2k)]
k=1,2,3 ar

5

K(D,k) = I(

T
D

20
e s
kN

80

Very weak dependence on D

)

e NLBG with o = 00, d = —2(2k + 1) recovers
the entropy of extremal RNBH at zero T
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Conclusion

The model of Bose gas in negative dimension recovers the temperature
dependence of entropy of the D=4 Schwarzschild black hole

We use the Riemann zeta function analytical continuation to define the
entropy of the Bose gas in negative dimension.

e D >4, in particular, for D =4k + 1, d= 4k —1)q, a = —q; k,q =1,2,3, ...

@ Bose gas with a = 2k in negative dimension d = — 4k recovers the
temperature dependence of entropy of the dS spacetime (D -arbitrary).

e Quantization of the mass of the extremal RN BH.
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