

Non-local Bose Gas as Microscopic origin of Schwarzschild black hole entropy

I. Aref'eva

Steklov Mathematical Institute
Based on the joint work with I. Volovich
2304.04695

Quantum gravity and Cosmology 2023
April 17-21, 2023, online

Outlook

- Introduction
 - Third Law of Thermodynamics and its violation by BHs
 - Microscopic origin of the Bekenstein-Hawking entropy — previous considerations
- Microscopic origin of the Bekenstein-Hawking entropy via non-local gas models
 - entropy of **non-local gas** models with the ζ -function regularization
 - Examples
- Conclusion

Four Laws of Thermodynamics vs Four Laws of Black Hole mechanics

- There is a remarkable analogy between the laws of thermodynamics and the laws of black hole mechanics

Thermodynamics

- 0. E, T, S, V, P, \dots
- 1. $dE = TdS - PdV$
- 2. $\delta S \geq 0$
- 3. $S \rightarrow 0$ if $T \rightarrow 0$

Black Hole mechanics

(Bardeen, Carter, Hawking,73'; Bekenstein 73')

- 0. surface gravity $\kappa = \frac{1}{M}$, Q, a, \dots
- 1. $dM = \frac{1}{8\pi M} d \frac{A}{4} + \dots$
- 2. $\delta \mathcal{A} \geq 0$
- 3. States with $\kappa = 0$ are unattainable

- A missing link in this area is a precise statistical mechanical interpretation of entropies for all varieties of black holes.
- We can try to find a statistical mechanics model with the same dependence of entropy on other thermodynamic variables as a particular black hole has
- However, there is a problem with the third law of thermodynamics

Third Law of Thermodynamics

- In the Planck formulation : Entropy $S \rightarrow 0$ as $T \rightarrow 0$ ($\beta = \frac{1}{T} \rightarrow \infty$)
- In the Nernst formulation

$$\delta S(T, x) \equiv S(T, x) - S(T, x') \rightarrow 0 \quad \text{as} \quad T \rightarrow 0 \quad (1)$$

or

$$\lim_{T \rightarrow 0} S(T, x) - \text{universal constant}$$

- Unattainability of $T = 0$

**REFS: W.Israel, 1986; R.Wald, 1997;
F. Belgiorno and M. Martellini, 2004;
C. Kehle and R. Unger, 2211.1574.**

Violation of Third Law in BH Thermodynamics

- Schwarzschild black hole

- Hawking temperature $T = \frac{1}{8\pi M}$

- Bekenstein-Hawking entropy $S = \frac{1}{16\pi T^2} \rightarrow \infty \quad \text{as} \quad T \rightarrow 0$

Violation in Planck formulation

- Reissner-Nordstrom black hole

- Hawking temperature $T = \frac{\sqrt{M^2 - Q^2}}{2\pi(\sqrt{M^2 - Q^2} + M)^2} \rightarrow 0$ for $M \rightarrow Q$ or $M \rightarrow \infty$

- BH entropy $S = \pi \left(\sqrt{M^2 - Q^2} + M \right)^2 \rightarrow \pi Q^2$ for $T \rightarrow 0$ **depends on Q**

- Kerr

Violation in Nernst formulation

Violation of Third Law in BH Thermodynamics

Few more examples

- dS
 - Hawking temperature $T = \frac{1}{2\pi\ell}$,
 - Bekenstein-Hawking entropy

$$S = \frac{1}{4} \ell^2 \Omega_{D-2} = \frac{1}{16\pi^2 T^2} \Omega_{D-2} \rightarrow \infty \quad \text{as} \quad T \rightarrow 0$$

- SAdS (in global coord.)
- RNAdS (in global and Poincare coords.)

BHs without Violation of Third Law

- SAdS in Poincare coords $ds^2 = \frac{r^2}{L^2}(-f dt^2 + d\vec{x}^2) + \frac{L^2}{r^2} \frac{dr^2}{f}$, $f = 1 - \frac{r_h^{d+1}}{r^{d+1}}$
 - Hawking temperature $T = \frac{(d+1)r_h}{4\pi L^2}$
 - Bekenstein-Hawking entropy (*density*) $S = \frac{1}{4G} \frac{r_h^d}{r^d} \rightarrow 0 \quad \text{as} \quad T \rightarrow 0$
- Deformed PAdS with BHs

Example. Spacetime with topology $AdS_2 \times S^8$ Horowitz, Strominger 91

$$ds^2 = c \rho^{9/20} \left[\frac{4}{25} \left(-\rho^2 h d\tau^2 + \frac{d\rho^2}{\rho^2 h} \right) + d\Omega_8^2 \right]$$
$$h = 1 - \left(\frac{\rho_0}{\rho} \right)^{\frac{14}{5}}, \quad T \sim \rho_0 \quad (2)$$

$$S \sim T^{9/5} \quad (3)$$

Physical systems with violation of the Third Law

- Lattice models.

The question of whether the third law is satisfied can be decided completely in terms of ground-state degeneracies

M. Aizenman, El. Lieb 80'

- Ice models.

V. F. Petrenko and R. W. Whitworth, 99', *Physics of Ice*

- Strange metals.

J. Zaanen et al. 15', *Holographic duality in condensed matter physics*.

Few Refs. on microscopic origin of BH entropy

- The problem of the microscopic origin of the Bekenstein-Hawking entropy of a black hole has attracted a lot of attention over the past 30 years.

- **Wheeler** considered of the BH interior as "bag of gold" (**Almheiri et al 20**)

- **Strominger and Vafa, 96'** $ds^2 = -f(r)dt^2 + f(r)^{-1}dr^2 + r^2d\Omega_3^2$,

$$f(r) = \left(1 - \left(\frac{r_0}{r}\right)^2\right)^2, r_0 = \left(\frac{8Q_H Q_F^2}{\pi^2}\right)^{1/6}, S_{BH} = 2\pi\sqrt{\frac{Q_H Q_F^2}{2}}$$

D-0 branes interpretation: $d(n, c) \sim \exp(2\pi\sqrt{\frac{nc}{6}})$, $c = 6(\frac{1}{2}Q_F^2 + 1)$, $n = Q_H$

$$S_{stat} = \ln d(Q_F, Q_H) \sim 2\pi\sqrt{Q_H(\frac{1}{2}Q_F^2 + 1)}$$

- **'t Hooft 84'** proposed to relate BH entropy with the entropy of thermally excited quantum fields in the vicinity of the horizon.
- Recent searches **Balasubramanian et al 22'** for internal geometries that provide the entropy of BH.
- Matrix models corresponding to BH in spacetime with topology $AdS_2 \times S^8$, **Maldacena'23**

To summarize Introduction

- Schwarzschild BHs violate 3-d law of thermodynamics.
- Schwarzschild BH entropies in D-dim $S \rightarrow \infty$ rather than zero when $T \rightarrow 0$.
- We search for quantum statistical models with such exotic thermodynamic behaviour.

Free energy of non-local Bose gas (NLBG).

- d-dim non-local Bose gas (standard case $\alpha = 2$)

$$F_{BG}(d, \alpha) = \frac{\Omega_{d-1}}{\beta} \int_0^\infty \ln \left(1 - e^{-\lambda \beta k^\alpha} \right) k^{d-1} dk.$$

- Explicit form

$$F_{BG}(d, \alpha) = - \frac{2\pi^{d/2}}{d\Gamma(d/2)} \left(\frac{1}{\beta} \right)^{\frac{d}{\alpha}+1} \left(\frac{1}{\lambda} \right)^{\frac{d}{\alpha}} \Gamma \left(\frac{d}{\alpha} + 1 \right) \zeta \left(\frac{d}{\alpha} + 1 \right).$$

- Free energy of of D-dim Sch.BH $F_{BH}(D, \beta)$
- $F_{BH}(D, \beta) = F_{BG}(d, \beta)$

Reminder: Euler Gamma function

$$\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx, \quad \Re s > 1 \quad (4)$$

$$\Gamma(n) = (n-1)! \quad (5)$$

$\Gamma(s)$ is a meromorphic function in \mathbb{C} with simple poles at $s = 0, -1, -2, \dots$

$\Gamma(s) \neq 0$ if $s \in \mathbb{C}$

Reminder: Riemann Zeta function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{\Gamma(s)} \int_0^{\infty} \frac{x^{s-1} dx}{e^x - 1}, \quad \Re s > 1 \quad (6)$$

$\zeta(s)$ is a meromorphic function in \mathbb{C} with simple a pole at $s = 1$

- Zeros of $\zeta(s)$

- "trivial zeros": $s = -2, -4, \dots$
- "non-trivial zeros" in the strip $0 < \Re s < 1$
- Riemann hypothesis: All non-trivial zeros lie on line $\Re s = \frac{1}{2}$
(Hardy theorem)

Reminder: Functional Relations

$$\Gamma(s) \Gamma(1-s) = \frac{\pi}{\sin(\pi s)}$$

$$\Gamma(s) \zeta(s) = \frac{\pi^s \zeta(1-s)}{2^{1-s} \sin(\frac{\pi(1-s)}{2})},$$

- Schwarzschild solution

$$ds^2 = - \left(1 - \frac{2M}{r}\right) dt^2 + \left(1 - \frac{2M}{r}\right)^{-1} dr^2 + r^2 d\Omega^2,$$

- Hawking temperature and Bekenstein-Hawking entropy

$$T = \frac{1}{8\pi M}, \quad S = 4\pi M^2 = \frac{\beta^2}{16\pi}$$

- Free energy

$$F = \frac{\beta}{16\pi}$$

- Equalizing: $F_{BG}(\beta) = F_{BH}(\beta)$

$$-\frac{\pi^{d/2}}{\beta^{\frac{d}{2}+1}\lambda^{\frac{d}{2}}}\zeta\left(\frac{d}{2}+1\right) = \frac{\beta}{16\pi} \quad (*)$$

- To fulfill (*) we have to assume

$$d = -4, \quad \lambda^2 = -\frac{\pi}{16\zeta(-1)}.$$

- Taking into account that $\zeta(-1) = -1/12$, we get

$$\lambda = \sqrt{\frac{3\pi}{4}},$$

- Therefore, we obtain that the thermodynamics of the 4-dim Schwarzschild BH is equivalent to the thermodynamics of the Bose gas in $d = -4$ spatial dimensions.
- We understand the thermodynamics of the Bose gas in negative spatial dimensions in the sense of the analytical continuation of the right hand site of

$$F_{BG} = - \frac{\pi^{d/2}}{\beta^{\frac{d}{2}+1} \lambda^{\frac{d}{2}}} \zeta\left(\frac{d}{2} + 1\right).$$

D>4 Schwarzschild BH vs Bose Gas

- D -dimensional Schwarzschild black hole, $D \geq 4$,

$$ds^2 = - \left(1 - \frac{r_h^{D-3}}{r^{D-3}} \right) dt^2 + \frac{dr^2}{1 - \frac{r_h^{D-3}}{r^{D-3}}} + r^2 d\omega_{D-2}^2,$$

- Hawking temperature $T = 1/\beta = \frac{D-3}{4\pi r_h}$
 r_h is the radius of the horizon.
- The entropy and the free energy are

$$S = \frac{\Omega_{D-2}}{4} \left(\frac{D-3}{4\pi} \frac{1}{T} \right)^{D-2}; F = \frac{(D-3)^{D-3} \beta^{D-3} \Omega_{D-2}}{4(4\pi)^{D-2}}$$

$S \rightarrow \infty$, when $T \rightarrow 0$ — a violation of the 3-d law

D>4 Schwarzschild BH vs Bose Gas.

- Equalizing: $F_{BG}(\beta) = F_{BH}(\beta)$ we get

$$\begin{aligned} & -\frac{\pi^{d/2}}{\Gamma(d/2 + 1)} \left(\frac{1}{\beta}\right)^{\frac{d}{\alpha}+1} \left(\frac{1}{\lambda}\right)^{\frac{d}{\alpha}} \Gamma\left(\frac{d}{\alpha} + 1\right) \zeta\left(\frac{d}{\alpha} + 1\right) \\ &= \frac{(D-3)^{D-3}}{4(4\pi)^{D-2}} \beta^{D-3} \frac{2\pi^{\frac{D-1}{2}}}{\Gamma(\frac{D-1}{2})} \end{aligned}$$

- powers of β : $d = -(D-2)\alpha$,

$$F_{BG} = -\frac{\pi^{-\frac{(D-2)\alpha}{2}}}{\Gamma(1 - \frac{(D-2)\alpha}{2})} \beta^{D-1} \lambda^{D-2} \Gamma(3-D) \zeta(3-D).$$

D>4 Schwarzschild BH vs Bose Gas. Necessary & sufficient conditions

- Since $F_{BH} > 0$, using the functional relations

$$i) \quad \Gamma(3 - D) \zeta(3 - D) = \frac{\zeta(D - 2)}{2^{D-2} \pi^{D-3} \sin(\frac{\pi(D-2)}{2})}$$

$$ii) \quad \Gamma\left(\frac{(D-2)\alpha}{2}\right) \Gamma\left(1 - \frac{(D-2)\alpha}{2}\right) = \frac{\pi}{\sin(\pi \frac{(D-2)\alpha}{2})}$$

- we obtain **necessary & sufficient** conditions for the existence of λ , $0 < \lambda < \infty$, solving $F_{BG} = F_{BH}$

$$0 < -\frac{\sin(\frac{\pi(D-2)}{2})}{\Gamma(\frac{(D-2)\alpha}{2}) \sin(\pi \frac{(D-2)\alpha}{2})} < \infty \quad (**)$$

D>4 Schwarzschild BH vs Bose Gas. Solutions to inequalities (**)

$$0 < -\frac{\sin(\frac{\pi(D-2)}{2})}{\Gamma(\frac{(D-2)\alpha}{2}) \sin(\pi \frac{(D-2)\alpha}{2})} < \infty \quad (**)$$

- Since D is a natural number, $\sin(\frac{\pi(D-2)}{2})$ takes three values:

$$\sin(\frac{\pi(D-2)}{2}) = \begin{cases} 1 & \text{for } D = 4k + 3, & k = 1, 2, 3, \dots \\ 0 & \text{for } D = 2k, & k = 2, 3, 4, \dots \\ -1 & \text{for } D = 4k + 1, & k = 1, 2, 3, \dots \end{cases} \quad (7)$$

D>4 Schwarzschild BH vs Bose Gas.

First series, $D = 2k$

$$0 < -\frac{\sin(\frac{\pi(D-2)}{2})}{\Gamma(\frac{(D-2)\alpha}{2}) \sin(\pi \frac{(D-2)\alpha}{2})} < \infty \quad (**)$$

- For $D = 2k$ — the zeros of the sines must be compensated: $\alpha = \frac{p}{k-1}$, $p = 1, 2, \dots$

Regularization $D = 2k + \epsilon$,

$$K[k, p, \epsilon] \equiv -\frac{\sin(\frac{\pi(D-2)}{2})}{\sin(\pi \frac{(D-2)\alpha}{2})} \Big|_{D=2k+\epsilon, \alpha=\frac{p}{k-1}}, \quad \lim_{\epsilon \rightarrow 0} K[k, p, \epsilon] = \frac{(-1)^k (k-1)}{2p}$$

$$k = 2, 3, 4, \dots$$

D>4 Schwarzschild BH vs Bose Gas.

4 series of solutions

- 4 series of solutions

D	d	α
$D = 4k + 1, \quad k = 1, 2, 3\dots$	$d = (4k - 1) \alpha $	$\alpha = -q, \quad q = 1, 2, 3$
$D = 4k + 1, \quad k = 1, 2, 3\dots$	$d = -(4k - 1)\alpha$	$\frac{4r}{4k-1} < \alpha < \frac{2(2r+1)}{4k-1}, \quad r = 0, 1, 2, \dots$
$D = 4k + 3, \quad k = 1, 2, 3\dots$	$d = -(4k + 1)\alpha$	$\frac{2(2r+1)}{4k+1} < \alpha < \frac{4(r+1)}{4k+1}, \quad r = 0, 1, 2\dots$
$D = 2k, \quad k = 2, 3, 4\dots$	$d = -2(k - 1)\alpha$	$\alpha = \frac{p}{k-1}, \quad p = 1, 2, \dots$

- Euclid $d = 3$
Kaluza-Klein $d = 5$
Superstrings $d = 10$
Here $d < 0$

De Sitter and Bose Gas

$$ds^2 = - \left(1 - \frac{r^2}{\ell^2}\right) dt^2 + \left(1 - \frac{r^2}{\ell^2}\right)^{-1} dr^2 + r^2 d\omega_{D-2}^2,$$

$$T = \frac{1}{2\pi\ell}, \quad S = \frac{1}{16\pi^2 T^2} \Omega_{D-2}, \quad F = \frac{\beta}{16\pi} \Omega_{D-2}, \quad D \geq 3$$

- $F_{dS} = F_{BG}$ gives

$$\alpha = 2k, \quad d = -4k,$$

$$\lambda^2 = \frac{1}{(2k)!} \frac{3\pi^{\frac{D-3}{2}+2k}}{\Gamma(\frac{D-1}{2})}, \quad k = 1, 2, 3, \dots \quad D = 4, 5, \dots$$

RN Extremal BH

D=4, We know that entropy for ERN at zero temperature

$$S = \pi Q^2 \quad (8)$$

For Bose gas

$$F_{BG} = -\frac{2\pi^{d/2}}{(2\pi)^d d\Gamma(d/2)} \left(\frac{1}{\beta}\right)^{\frac{d}{\alpha}+1} \left(\frac{1}{\lambda}\right)^{\frac{d}{\alpha}} \Gamma\left(\frac{d}{\alpha}+1\right) \zeta\left(\frac{d}{\alpha}+1\right). \quad (9)$$

and entropy

$$E_{BG} = \beta^2 \frac{\partial F_{BG}}{\partial \beta} = \left(\frac{d}{\alpha}+1\right) \beta^{-\frac{d}{\alpha}} \frac{\pi^{d/2}}{\Gamma(d/2+1)} \left(\frac{1}{\lambda}\right)^{\frac{d}{\alpha}} \Gamma\left(\frac{d}{\alpha}+1\right) \zeta\left(\frac{d}{\alpha}+1\right) \quad (10)$$

We take $\alpha = \infty$ and we get

$$\pi Q^2 = \frac{\pi^{d/2}}{\Gamma(d/2+1)} \Gamma(1) \zeta(1) \quad (11)$$

Extremal RNBBH. D=4

Let us denote $d/2 + 1 \equiv -n$, $n = 0, 1, 2$, and we left with

$$\frac{\pi Q^2}{\pi^{n+1}} = \frac{\zeta(1)}{\Gamma(-n)} \quad (\#)$$

We understand the RHS of $(\#)$ as $\lim_{\epsilon \rightarrow 0} \frac{\zeta(1+\epsilon)}{\Gamma(-n+\epsilon)} = (-1)^n \frac{1}{n!} \Rightarrow n = 2k$

$$Q^2 \equiv M^2 = \frac{\pi^{2k}}{(2k)!}, \quad k = 1, 2, 3$$

In the usual unit and correct multiple $(2\pi)^d = (2\pi)^{-2(n-1)}$

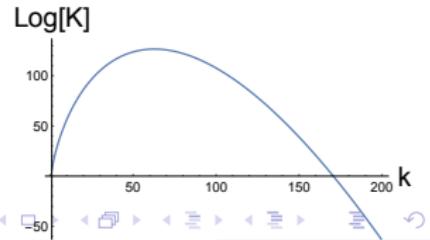
$$M^2 = K(k) \textcolor{brown}{M}_{pl}^2, \quad K(k) = \frac{\pi^{2k} (2\pi)^{2(2k-1)}}{(2k)!}, \quad k = 1, 2, 3 \quad (12)$$

We get quantization of the mass of the BH!

Using the Stirling formula $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

we get $M^2 \approx \frac{1}{8\pi^{5/2}\sqrt{k}} \left(\frac{2e\pi^3}{k}\right)^{2k} \textcolor{brown}{M}_{pl}^2$

$$2e\pi^3 \approx 168$$



Extremal RNBHs. D>4

For the extremal case we have $T = 0$ and entropy

$$S_{ext} = \frac{1}{4} \Omega_{D-2} M^{\frac{D-2}{D-3}}, \quad \Omega_{D-2} = \frac{2\pi^{(D-1)/2}}{\Gamma((D-1)/2)}$$

$$S_{BG} = S_{BG}$$

$$\frac{1}{4} \frac{2\pi^{(D-1)/2}}{\Gamma((D-1)/2)} M^{\frac{D-2}{D-3}} = \left(\frac{d}{\alpha} + 1\right) \beta^{-\frac{d}{\alpha}} \frac{\pi^{d/2}}{\Gamma(d/2 + 1)} \left(\frac{1}{\lambda}\right)^{\frac{d}{\alpha}} \Gamma\left(\frac{d}{\alpha} + 1\right) \zeta\left(\frac{d}{\alpha} + 1\right)$$

We take $\alpha = \infty$ and get

$$\frac{1}{4} \frac{2\pi^{(D-1)/2}}{\Gamma((D-1)/2)} M^{\frac{D-2}{D-3}} = \frac{\pi^{d/2}}{\Gamma(d/2 + 1)} \Gamma(1) \zeta(1) \quad (13)$$

Let us denote $d/2 + 1 \equiv -n$, $n = 0, 1, 2$, and we left with

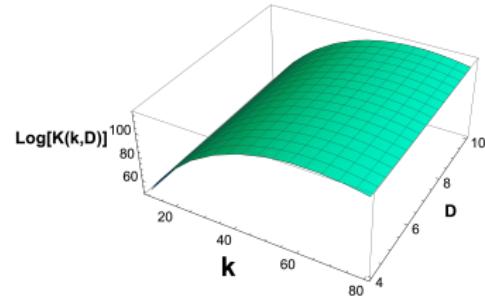
$$\frac{1}{4\pi^{n+1}} \frac{2\pi^{(D-1)/2}}{\Gamma((D-1)/2)} M^{\frac{D-2}{D-3}} = (-1)^n \frac{1}{n!} \Rightarrow n = 2k \quad (14)$$

RN Extremal BHs. D>4

In the usual unit and correct multiple $(2\pi)^d = (2\pi)^{-2(n-1)}$
(the same as it was for D=4)

$$\left(\frac{M}{M_{pl}}\right)^{\frac{D-2}{D-3}} = K(D, k),$$

$$K(D, k) = \Gamma\left(\frac{D-1}{2}\right) \frac{4\pi^{2k+1} (2\pi)^{2(2k-1)}}{2\pi^{(D-1)/2} (2k)!}$$
$$k = 1, 2, 3, \dots$$



Very weak dependence on D

- NLBG with $\alpha = \infty$, $d = -2(2k + 1)$ recovers the entropy of extremal RN BH at zero T .

Conclusion

- The model of Bose gas in negative dimension recovers the temperature dependence of entropy of the D=4 Schwarzschild black hole
- We use the Riemann zeta function analytical continuation to define the entropy of the Bose gas in negative dimension.
- $D > 4$, in particular, for $D = 4k + 1$, $d = (4k - 1)q$, $\alpha = -q$; $k, q = 1, 2, 3, \dots$
- Bose gas with $\alpha = 2k$ in negative dimension $d = -4k$ recovers the temperature dependence of entropy of the dS spacetime (D -arbitrary).
- Quantization of the mass of the extremal RN BH.